R4R: Reproducibility for R

Pierre Donat-Bouillud
pierre.donat.bouillud@fit.cvut.cz
Czech Technical University
Prague, Czech Republic
Northeastern University
Boston, United States

Sebastian Krynski
krynsseb@fit.cvut.cz
Czech Technical University
Prague, Czech Republic
Northeastern University
Boston, United States

Abstract

Ensuring reproducibility is a fundamental challenge in computa-
tional research. Reproducing results often requires reconstructing
complex software environments involving data files, external tools,
system libraries, and language-specific packages. While various
tools aim to simplify this process, they often rely on user-provided
metadata, overlook system dependencies, or produce unnecessarily
large environments.

We present r4r, a tool that automates the creation of minimal,
user-inspectable, self-contained execution environments through
dynamic program analysis techniques. r4r captures all runtime
dependencies of a data analysis pipeline and produces a Docker
image capable of reproducing the original execution. Although de-
signed with first-class support for the R programming language,
r4r also includes a generic fallback mechanism applicable to other
languages. We evaluate r4r on a collection of R Markdown note-
books from Kaggle and find that it achieves exact reproducibility
for 97.5% of deterministic notebooks.

CCS Concepts

«» General and reference — Empirical studies; » Software and its
engineering — Software version control; Software evolution;
Dynamic analysis; « Social and professional topics — Soft-
ware maintenance; « Security and privacy — Virtualization and
security; » Applied computing — Bioinformatics.

Keywords
reproducibility, record and replay, container, R language

ACM Reference Format:

Pierre Donat-Bouillud, Filip Kiikava, Sebastian Krynski, and Jan Vitek.
2025. R4R: Reproducibility for R. In ACM Conference on Reproducibility and
Replicability (ACM REP °25), July 29-31, 2025, Vancouver, BC, Canada. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3736731.3746156

This work is licensed under a Creative Commons Attribution 4.0 International License.
ACM REP °25, Vancouver, BC, Canada

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1958-5/2025/07

https://doi.org/10.1145/3736731.3746156

Filip Krikava
filip.krikava@fit.cvut.cz
Czech Technical University
Prague, Czech Republic
Northeastern University
Boston, United States

Jan Vitek
vitekj@me.com
Czech Technical University
Prague, Czech Republic
Charles University
Prague, Czech Republic

1 Introduction

Reproducibility is one of the cornerstones of the scientific method.
In computation-based research, this means that conclusions drawn
from data need to be supported with the raw data and code that
would allow rerunning the analysis from scratch. In other words,
transparency is essential to support reproducibility. As experimen-
tal results in various fields of science have increasingly failed to be
replicated, concerns about the reproducibility of research results
have arisen [5]. Some have even claimed it to be a replicability crisis
[4].

Results are often presented as virtual notebooks. The two most
popular formats are Jupyter notebooks [19] for Python, and R Mark-
down [39] for R. Notebooks are ultimately pieces of software, and,
as such, they bring with them all the software-related problems.
But, at the same time, they aim for user-friendliness as they are
intended to be used by researchers that often lack formal training in
programming. Therefore, these languages do not generally impose
rigorous package dependencies’ specification, or environment, that
are needed to run.

A study [38] of 2000 replication datasets with code in R, i.e.
research code in their final, published version, showed that only 26%
of the code successfully completed execution, and after applying
automated fixes, only 56% did succeed. This is only an upper bound
on the reproducible replications packages, as re-execution of code
is just a necessary condition of reproducibility. Studies on Python’s
Jupyter notebooks [29, 43] have shown similar results. As another
example, the study [34] shows poor success when attempting to
reproduce notebooks from biomedical publications, even in cases
where dependencies were declared in standard requirement files.
Many of such dependencies did not even install successfully.

Here, we focus on the R language, and we are concerned with the
computational reproducibility [27] of notebooks, sometimes called
methods reproducibility [34], where the goal is to obtain consistent
results using the same input data, computational steps, methods,
and code, and conditions of analysis. The consistency of results
will be checked by comparing the outputs of the analysis when
run on different hosts. Note that we do not aim at achieving result
reproducibility [13] nor replicability [1], where the goal is to find the
same results but not necessarily using the same exact computational

https://orcid.org/0000-0003-4455-1130
https://orcid.org/0000-0002-0478-6202
https://orcid.org/0000-0002-4124-0225
https://orcid.org/0000-0003-4052-3458
https://doi.org/10.1145/3736731.3746156
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3736731.3746156

ACM REP ’25, July 29-31, 2025, Vancouver, BC, Canada

steps. We also want to create reproducible artifacts that are easily
inspectable and modifiable by humans.

In R, creating reproducible artifacts has meant painstakingly
collecting the versions of R packages but also system dependencies
used in the code, making sure that all data sources are included, and
carefully reviewing all possible sources of non-determinism. Re-
trieving the R package versions can now be automated, for instance,
with a tool such as renv [40], but system dependencies often require
manually building a Docker image. Computation reproducibility
with the current R tooling indeed require manual or semi-manual
efforts. This is further discussed in Section 2.

We introduce a tool, r4r, that can automatically create a repro-
ducible artifact from an R notebook. It traces the execution of a
notebook and detects the R packages, the system dependencies, the
data sources, and even the operating system resources that have
been used to generate the notebook output. It then generates a
human-inspectable Dockerfile and packages it into a Docker image.
We detail the design of r4r in Section 3 and its implementation in
Section 4.

We then evaluate r4r on a dataset of R Markdown notebooks
from the data science competition Kaggle to check whether r4r
correctly creates reproducible artifacts in Section 5.

2 Background

Achieving computational reproducibility requires careful manage-
ment of software environments, data inputs, and code dependencies.
In the context of data science workflows, particularly those written
in R, reproducibility is complicated by the dynamic nature of the
language, the diversity of available packages, and their reliance
on system-level libraries. Moreover, the increasing use of com-
putational notebooks as a medium for scientific communication
introduces additional challenges, as these documents often conflate
code, data, and narrative in a format that lacks rigorous dependency
specification. In this section, we provide the necessary background
on the R language and its ecosystem, discuss the structure and
execution model of computational notebooks, and review existing
efforts to support reproducibility in both R and Python.

2.1 The R language

R is an open-source programming language and software envi-
ronment widely used for statistical computing and data analysis.
Originally developed for statisticians, it has become a de facto stan-
dard in many scientific disciplines including bioinformatics, data
analysis, finance, or data mining [12]. R is particularly well-suited
for users without formal training in computer science, as it was
designed with statisticians and domain scientists in mind, offering
a high-level syntax tailored to data analysis tasks.

The strength of R lies in its extensive ecosystem of packages,
which significantly extend the core language’s capabilities. These
packages are primarily provided from curated repositories such as
CRAN! and Bioconductor,? which together host tens of thousands
of actively maintained packages: as of March 2025, CRAN hosts
over 22K packages and Bioconductor contains over 2K packages.

!https://cran.r-project.org/
Zhttps://www.bioconductor.org

Pierre Donat-Bouillud et al.

Packages are also hosted on code sharing websites such as GitHub
or Gitlab.

Many of these packages are written in R, but they can also include
native code written in C, C++, Fortran, or even Rust. Consequently,
installing such packages often requires a range of system libraries
and build tools. Because R packages are distributed primarily as
source code, installing them involves compiling code locally. This
introduces often undocumented dependencies, not only on other
R packages but also on external system-level components, such as
compilers, development headers, and shared libraries. As a result,
creating a fully reproducible R environment requires capturing both
the language-level and system-level dependencies.

2.2 Computational notebooks

Computational notebooks integrate narrative text, executable code,
and visualizations or results within a single, cohesive file. These
notebooks embody the concept of literate programming [20], an
approach to software development and research where documen-
tation and source code coexist together, explaining how the code
works in natural language.

Both Jupyter and R Markdown notebooks allow researchers to
weave descriptive content with computational analysis, fostering
reproducibility and transparency. R Markdown (Rmd) notebooks,
as the name suggests, use Markdown [14], a lightweight markup
language with an optional header specifying metadata and configu-
ration options. The code snippets are organized into fenced blocks.
An Rmd document can be rendered into various output formats,
such as HTML or PDF. During rendering (the other often used term
is knitting), the code blocks are sequentially executed, and their
results are embedded in the document. This execution produces
the final output.

Figure 1a shows an example of an Rmd document with three
R code blocks. Rendering is done in two steps. First, the code in
these blocks is sequentially executed, embedding the results into
a plain markdown document which is then turned into an HTML
document as specified in the header, using pandoc.® The result is
shown in Figure 1b. Concretely, this example extracts the shape
files of the world’s countries and plots the ones that are part of the
African continent.*

2.3 Related work

2.3.1 R The R ecosystem has developed various solutions to man-
age dependencies for notebooks. The canonical solution for R scripts
is to create an R package around the scripts and declare the R de-
pendencies in the DESCRIPTION file of the package. However, this
does not integrate well with R Markdown notebooks.

R dependencies. Some packages aim at capturing the precise
versions of the R packages used for the notebook. The most popular
one is renv [40]; it can analyze the R files in the project, looking for
occurrences of library(package), package: :method and so on,
to find out the R dependencies, and saves a snapshot of those that
can be sent to another user. groundhog [35] supports individual
R files, not only projects like renv, and makes it possible to load

Shttps://pandoc.org/
4The archive comes from natural earth datacf. https://www.naturalearthdata.com/
downloads/110m-cultural-vectors/110m-admin-0-countries/

https://cran.r-project.org/
https://www.bioconductor.org
https://pandoc.org/
https://www.naturalearthdata.com/downloads/110m-cultural-vectors/110m-admin-0-countries/
https://www.naturalearthdata.com/downloads/110m-cultural-vectors/110m-admin-0-countries/

R4R: Reproducibility for R

output: html_document

* > {r echo=FALSE, include=FALSE}
library(sf)

Load data:

9 " {r}

10

1
12
13
14
15
16
17

unzip("ne_110m_admin_0_countries.zip")

world <- sf::st_read("ne_110m_admin_0_countries.shp")
africa <- subset(world, CONTINENT == "Africa")

Show African countries

T{r}

plot(africa["SOVEREIGNT"], main = "Africa - Sovereignty")

(a) source (notebook . Rmd)

ACM REP ’25, July 29-31, 2025, Vancouver, BC, Canada

Load data:

unzip(“ne_110m_admin_0_countries.zip")
world <- sf::st_read("ne_110m_admin_0_countries.shp")
africa <- subset(world, CONTINENT == "Africa")

Show African countries

plot(africa["SOVEREIGNT"], main = "Africa - Sovereignty")

Africa - Sovereignty

(b) rendered document (notebook . html)

Figure 1: Example R markdown document

a specific version of a package at a given date. miniCRAN [8] can
be used to build a smaller version of CRAN, only tailored to the
packages required for a specific notebook. Require [23] is similar
to renv but optimizes for speed.

System dependencies. Other aspects of the system can influence
how a notebook runs, such as the operating system, the system
libraries, and the compiler flags used to compile R and the pack-
ages. All those system and build dependencies can be set along
the notebook using a containerized environment, such as Docker.
The Rocker project [6] provides several Docker images specialized
for various tasks involving R. If more system dependencies are
required, a secondary Dockerfile has to be written. Some packages
provide utilities to ease adding dependencies, including the system
dependencies. dockerfiler [9] provides an R API to build Docker
files. pracprac [24] combines renv and helpers to create a Docker-
file. containerit [26] scans the R session info and adds required
R dependencies to a chosen base image from Rocker. It also adds
some system dependencies from a manually curated repository that
only supports them for some Linux distributions.> 1iftr [25] ex-
tends the YAML metadata section of a R Markdown document with
directives to indicate the base Docker image and the R and system
dependencies. r2u® installs CRAN packages as Ubuntu packages,
which makes it possible to specify system dependencies. However,
it does not handle all versions of the packages. rang [16] aims at
reconstructing a historical computation environment by specifying
a past date when the notebook used to run and queries various
databases to find dependencies, including system ones. rix [32]
leverages Nix, a Linux package manager focused on reproducible
builds, to specify together the version of R, its packages, and all the
system dependencies.

5 SysRegs https://github.com/r-hub/sysreqgs, now superseded by SystemRequirements
https://github.com/rstudio/r-system-requirements
Shttps://eddelbuettel.github.io/r2u/

2.3.2 Python. The problem of reproducibility is, unfortunately, not
exclusive to R. Let’s look at how packages and their dependencies
are managed in the Python ecosystem.

The authoritative pypi [17] package index, used by tools such as
pip[30], does not allow for specifying system dependencies such as
C/C++ and Fortran compilers, or shared C libraries. As such, issues
might occur when building self-contained native code on the end
client.

virtualenv [31], a superset of the official venv [33], provides
isolated development environments allowing for installing and man-
aging dependencies independently for each project. Dependencies
can be exported into a requirements. txt file with pip to recreate
it later on a different host. This, however, does not consider system
dependencies, or the Python version used to create the virtual envi-
ronment. Moreover, the mentioned file could omit exact versions of
dependencies or specify versions by constraints. Problems can arise
if a dependency introduces breaking changes in a future release.
The more recent [3] makes it possible to indicate the Python version
but does not support system dependencies either.

conda [2] is an alternative package and environment manager
with its own package index. It hosts several packages for data sci-
ence, and it is not limited to Python. As opposed to virtualenv,
it can manage different versions of Python as part of package de-
pendencies. Exact versions of dependencies can be explicitly listed
when exported, increasing reproducibility. This is done with lock
files, which can pin exact versions and builds across platforms,
even transitive dependencies. Furthermore, conda can package all
system dependencies, making the package self-contained.

All those tools, when they support system dependencies, require
some level of manual intervention to list the required system de-
pendencies whereas r4r automatically detects those dependencies.

2.3.3 Generic reproducibility tools. Binder [18] can analyze a git
repository that follows the Reproducible Execution Environment
Specification and generate a Docker image from it. It supports

https://github.com/r-hub/sysreqs
https://github.com/rstudio/r-system-requirements
https://eddelbuettel.github.io/r2u/

ACM REP ’25, July 29-31, 2025, Vancouver, BC, Canada

Python, R and Julia. For R, the repository must contain a runtime. txt
file with the date that represents the snapshot of CRAN hosted on
the Posit Public Package Manager, and an install.R file that ex-
plicitly installs the required R packages, and so requires manual
intervention.

CDE [15] uses ptrace to detect the files require to run the pro-
gram and then to change the paths when replaying the execution.
Provenance-to-use [28] uses CDE and enrich it with provenance
information about the detected files and processes. Provenance-to-
use is included in SciUnit [10]. SciUnit creates Reusable Research
Objects and makes it possible to visualize which process created
which file or spawned which process. It does not indicate from
which system or R package the process or file comes from.

Reprozip [7] also uses ptrace to detect files and processes and
creates a rpz archive, than can be unpacked to a Docker Image,
a VM with Vagrant, a directory, or a chroot environment. It can
optionally resolve Debian and RPM packages. Its Debian package
resolver uses dpkg-query and so it much slower than the Debian
package resolver of r4r. It does not support R packages.

3 Requirements of the r4r tool

Our tool aims to create a reproducible environment (a sandbox) for
a given program execution. For an environment to be reproducible,
it should satisfy two conditions: it should confine all sources of non-
determinism so that the program can run unimpacted, i.e. producing
the same result as it did while running on the host machine, and it
should be transferable to other hosts.

By producing the same result, we mean that the output of the
program is byte-by-byte (or line-by-line) identical when run on
different hosts. The task to decide on the similarity of the output is
delegated to a diff program.

One such environment is the current environment of the host
machine, which, by definition, has all the dependencies the program
needs. However, such an environment would not be very practical.
Instead, we want to construct the smallest possible one that can
still run the program and produce the same result.

There are three problems that we need to address: What are the
sources of non-determinism (what can cause the program to have a
different output), how can we find them (what the program needs
to produce the same output), and how do we use this information
to create a reproducible environment.

3.1 Sources of non-determinism

There are many sources of non-determinism. For example, at the
hardware level, there are cache contention, CPU throttling, and
random rounding. At the operating system level, there is possible
non-determinism introduced by concurrency, scheduling, or mem-
ory allocation and address space layout. Finally, at the application
level, there is time, randomness, environment variables, program
input, configuration, libraries, and external commands.

They all can impact program results. For example, Vila et al. [42]
has shown an observable effect of hardware perturbations in neu-
roimaging. In this work, we focus on the last application level.
Concretely, if a given program is reproducible on the host machine,
i.e., multiple runs produce the same output, it should produce the
same output in the sandbox.

Pierre Donat-Bouillud et al.

The primary source of non-determinism is, therefore, program
dependencies and environment variables. By dependencies, we
mean both the program input and the transitive closure of all the
resources that the program needs to run, including libraries, ex-
ternal commands, and configuration files that are used during the
execution.

A note on randomness. We do not address randomness as it could
interfere with the data analysis in the notebook. Instead, we leave it
up to the user to re-seed the pseudorandom number generator in a
controlled way. Taking into account the variability due to random-
ness would require the tool to decide on the statistical similarity
of, for instance, numbers output by the program on several runs.
This would be the task of the diff tool. Capturing the time/date of
execution is also out of scope.

3.2 Dependency tracing

To find program dependencies, we use dynamic program analysis.
Any file that is interacted with can be considered a dependency.
For example, running less notebook.Rmd on Ubuntu 24.04 accesses
eight files. Next to the binary itself and the Rmd file, the command
uses a dynamic linker, which accesses its cache (1d.so.cache) to
load two shared libraries, 1libc and libtinfo, to access terminal
information capabilities. The libc accesses the compiled database
of locale information (locale-archive) to learn how to do locale-
aware formatting for the current locale. The libtinfo loads the
terminal capabilities from a terminfo file (xterm-256color) for the
current terminal. Finally, the less command also has a configuration
file (~/.1ess) and a history file (~/.1esshst). These files belong to
different categories, direct program dependencies, such as shared
libraries, or configuration files. Some often do not change (e.g. the
xterm-256color), but for the reproducible environment, we need to
consider all of them.

Next to file dependencies, we must also capture environment vari-
ables as they affect the behavior of many programs and libraries. For
example, the LC_x variable family defines locale-dependent behav-
ior, including text encoding, sorting, date, and number formatting.
Finally, we need to capture information about access control, i.e.
which users and groups are related to the traced files. We use dy-
namic analysis rather than static, as we are not looking for an
exhaustive list but for dependencies used by a concrete program
execution.

3.3 Reproducible environment

The last problem is turning these traced dependencies into a re-
producible environment. We need a way to package all the depen-
dencies together in a transferable and runnable format on different
machines.

One could use two main technologies: virtual machines and
containers. Virtual machines (VMs), such as those provided by
VirtualBox,” emulate complete hardware systems, with their CPU
architecture, including operating systems and software dependen-
cies, enabling full isolation from host environments. Container

https://www.virtualbox.org/

https://www.virtualbox.org/

R4R: Reproducibility for R

technologies, such as Docker® and Singularity®, offer a lighter-
weight alternative by sharing the host’s kernel and isolating only
application-level dependencies.

Virtual machines provide superior long-term preservation and
archiving capabilities due to their comprehensive encapsulation of
both software and hardware. Conversely, containers are practical
for reproducible research due to their portability, lower overhead,
and ease of use across platforms.

4 Design and implementation

Based on the above design, we have implemented the r4r tool.
Currently, it supports Ubuntu-based distributions — we tested it on
Ubuntu 24.04. We have chosen Docker containers as the target for
the reproducible environment primarily due to their popularity and
ease of use. The tool is written in C++ and contains 5.5K lines of
code and 1.8K of tests.

The tool is a command-line application that executes a target pro-
gram (the tracee) while monitoring its runtime dependencies. Upon
successful execution, it analyzes the resulting trace data to gen-
erate a Docker image specification and a corresponding Makefile
capable of building the image and re-instantiating the program. Ex-
ecution is structured as a pipeline of tasks (cf. Figure 2), divided into
three main components. The front-end captures low-level informa-
tion about file accesses during execution. The middle-end abstracts
these file-level traces into higher-level, user-understandable units,
such as system or language-specific packages, and encodes them
into a manifest that serves as an intermediate representation. This
manifest is then passed to the back-end that uses it to synthesize
a reproducible target environment. In the following sections, we
illustrate each stage of the pipeline using the example R Markdown
file from Figure 1,!° rendered and traced by r4r as follows:

$ r4r R -e 'rmarkdown::render("notebook.Rmd")"

4.1 Trace files

A file interaction generally happens via system calls. Therefore, to
trace file usage in the front-end, we need to trace system calls. In
Linux, instrumenting running processes can be done using kernel
interfaces such as eBPF [36] or the ptrace system call.!! eBPF is a re-
cent and efficient mechanism that allows user-defined programs to
execute within the kernel in response to various events—including
system calls. It is a sandboxed virtual machine inside the kernel that
allows one to safely and efficiently run custom code in response to
kernel events: essentially, programmable kernel hooks without the
need to do kernel modules. In contrast, ptrace is a longstanding
system call interface traditionally used for debugging and process
control used by system tracers and debuggers. It operates by in-
tercepting system calls and allowing a tracing process to observe
and manipulate the state of a target process, but with significantly
higher performance costs due to extensive context switching and
synchronization. While ptrace has a higher overhead, it is simpler

8https://www.docker.com/
“https://docs.sylabs.io/guides/latest/user-guide/
Ohttps://cran.r-project.org/web/packages/rmarkdown/index.html
"https://man7.org/linux/man-pages/man2/ptrace.2.html

ACM REP ’25, July 29-31, 2025, Vancouver, BC, Canada

to use and at the time of writing r4r, eBPF had a longstanding issue
of disallowing reading of arbitrary long strings.!?

Another way to trace system calls is via system call interposition.
However, this approach is inherently prone to race conditions since
system calls may be executed in parallel [11, 45].

When r4r starts, it forks the tracee and attaches ptrace to it. Un-
til the tracee ceases to exist, we capture all system calls and record
those related to file access. Concretely, we record paths on openat,
execve, readlinkat and newfstatat system calls. Additionally, the
system monitors fork, vfork, and clone, making sure that children’s
processes are traced as well.

Using ptrace adds a significant overhead. To mitigate it, we
first use the relatively new PTRACE_GET_SYSCALL_INFO (introduced
in Linux 5.3) API to extract information about system call parame-
ters. Next, ptrace API allows one to read only one word at a time,
which would be too slow for reading longer paths (effectively ex-
ecuting a system call for every 8 bytes of data). Instead, we use
process_vm_readv, directly accessing the tracee memory. This has
to be done with care in order not to trigger a page fault while read-
ing past a page boundary looking for the end of the null-terminated
path string.

Running the example Rmd file spawned 18 processes that to-
gether triggered over 14K system calls. Out of these, 1.5K were
related to file interaction recording 539 unique files and 50 sym-
bolic links.

There were more opened files, but we already ignored certain
files while tracing (e.g. paths starting with /dev, /proc or /sys), as
well as all files that are part of the target Docker base image that
will be used as the base image for the environment, as long as they
have the same checksum. Together, the tool ignored 178 files.

4.2 Resolve files

The file resolver in the middle-end processes the captured file paths,
resolving relative paths to absolute ones and handling symbolic
links. It also determines the nature of each file (e.g., system library,
user file, or package resource) and categorizes it accordingly. Each
file is analyzed to determine its source. Currently, we support the
following sources:

o Ubuntu Packages: files belonging to system packages. We use
the dpkg database to get the list of installed packages and the
dpkg info list files to build the reverse index of the package
file map, as querying dpkg-query is just too slow. Optionally,
additional package archives (such as PPAs on Ubuntu) are
detected.!®

® R Packages: files associated with R libraries (on CRAN and
GitHub). We use the R API, with installed_packages, to get
the list of installed packages and their locations.

o Copy files: Files not resolved by any other resolver are treated
as user files. They can be either inputs, in which case they are
marked for direct inclusion in the environment, or outputs,
in which case they will be copied from the environment upon
rerun. If the file existed before, it is considered input, and if it
has been created and still exists after the tracee exists, it will

12The effective limit was 240 bytes, cf. https://github.com/bpftrace/bpftrace/issues/305
3The detection fails if the source list file is purged before the tracing, which sometimes
happens on automated setups. In that case, the user must manually add the other
source lists to be copied in the Manifest.

https://www.docker.com/
https://docs.sylabs.io/guides/latest/user-guide/
https://cran.r-project.org/web/packages/rmarkdown/index.html
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://github.com/bpftrace/bpftrace/issues/305

ACM REP ’25, July 29-31, 2025, Vancouver, BC, Canada

Pierre Donat-Bouillud et al.

: rdr :
] front-end middle-end back-end]
]]] 1 |
. 10 11 1
i Trace files >| Resolve files > Resolve sys-tem <<9pt|ongl>> Creatg > Build Docker »| Rerun
{ dependencies Edit manifest Dockerfile | Image
| N l
__ |
make

Figure 2: The r4r pipeline.

belong to the results file set. Both sets are configurable using
command line parameters and a manifest (cf. Section 4.4).

Rendering the example notebook uses 129 Ubuntu packages and
25 R packages. Two files were considered as inputs, the notebook
itself and the archive containing the shape file, and eight files as
output, the rendered HTML page and seven files extracted from
the archive.

4.3 Resolve system dependencies

R packages can contain a mixture of R code and native code (usually
in C/C++ or Fortran). On most platforms (Linux distributions), they
are distributed in source form and thus need to be built first at
installation time. Unfortunately, there is no standardized way for
a package to indicate what system dependency it needs. Worse, R
packages can use arbitrary code during its build [46], through a
configure script that runs as the first step of the package build. We
could trace the build process of the packages but they usually not in-
stalled directly by the traced notebook and can be time-consuming.
Fortunately, the Posit package manager!'* maintains a database of
such system dependencies and provides a web-based API to query
it. We query every package that needs compilation and include it
in the existing set of resolved system packages.

In our example, the sf package depends on five additional Ubuntu
packages. Note that just installing the package would not reveal
this, and the user would only get a compiler error.

4.4 Edit manifest

After the file resolution is done, the tool prepares a manifest, a
description of the environment that will be built. This description
can be saved to a disk and edited by the user before the pipeline
processes the next step. For example, the manifest created for the
example notebook is shown in Figure 3 (showing just the copy
section provided by the copy resolver). The manifest serves as an
intermediate representation of the program dependencies.

4.5 Create Dockerfile

In the backend, the generator takes the manifest and translates it
into a Dockerfile. This includes specifying the base image, copying

4https://packagemanager.posit.co/

This is the manifest file generated by R4R.
copy:
- ignore file.
C - mark file to be copied into the image.
R - mark file as a result file.
C /r4r/notebook.Rmd
R /r4r/notebook.html
R /r4r/ne_110m_admin_0_countries.README.html
R /r4r/ne_110m_admin_0@_countries.VERSION. txt
R /r4r/ne_110m_admin_0@_countries.cpg
R /r4r/ne_110m_admin_0_countries.dbf
R /r4r/ne_110m_admin_@_countries.prj
R /r4r/ne_110m_admin_0@_countries.shp
R /r4r/ne_110m_admin_0_countries.shx
C /r4r/ne_110m_admin_0_countries.zip

Figure 3: Manifest for the example Rmd notebook with the
copy section

the required files, and installing the necessary packages to repli-
cate the runtime environment. We also create a username and all
necessary groups, install the proper locale, and set the timezone.

The process is straightforward except for installing R packages.
In R, there is no built-in support for version pinning. Therefore,
if we want to install a specific package version, we have to do it
manually. We achieve this by topologically sorting the package tree
and installing packages in batches to leverage some parallelism.

Files are copied using tar. We first create an archive with all
accessed files and symbolic links, and then we generate a script that
sets proper permissions and ownership for all affected directories.
If a file is allowed to be accessed because of a user membership in a
particular group, the very same condition will be recovered in the
sandbox.

4.6 Build Docker image and rerun

Next to the Dockerfile, we also generate a Makefile which contains
targets for building the image, running the target program, and
copying result files from the container. This is to make it easier for
users to use. It simply calls docker build, docker run, and docker
cp.

https://packagemanager.posit.co/

R4R: Reproducibility for R

4.7 Discussion

Copying files vs package installation. The current implementa-
tion focuses on creating a reproducible environment for scientific
notebooks written in R. It has a first class support for R which is
encapsulated in the R package resolver that understands how R
manages its packages. It knows where packages are loaded from,
how they are installed and what dependencies they have. Without
the R resolver, r4r will simply copy the package content into the
Docker image.

This is what the tool does for reproducible environment of an
IPython notebook, which currently does not have first-class sup-
port. However, it presents two drawbacks. First, it complicates the
inspection of artifacts and obscures high-level understanding of
dependencies. Second, it creates a fragile environment that may
be incomplete, limiting future experimentation. For example, in
IPython, only compiled Python files (or pycache files for Python 3.12
and above) used during notebook execution are copied. If additional
functions are used later, they might fail because their implementa-
tions reside in modules not included in the Docker image, as they
were not initially needed.

Adding support for a new language is a matter of adding a new
resolver. Concretely, this means implementing a new C++ class
with one virtual method and extending the manifest with whatever
information the resolver needs to recreate the state in a Docker
image.

Support for other distributions and operating systems. Currently,
r4r runs on Ubuntu Linux on x86_64. Porting it to another Linux
distribution requires changing the middle-end to resolve system
dependencies with another package manager. For instance, RPM-
based distribution makes it possible to query the package database,
which uses sqlite, a native implementation called ndb, or a Berke-
ley DB, with the rpm command. The database can also be directly
accessed to perform custom requests. Porting it to other operating
systems requires changing the front-end. For Windows, next to
WSL (Windows Subsystem for Linux)!® which r4r directly supports,
we could use ETW (Event Tracing for Windows),!® a kernel-level
tracing system allowing to attach callbacks to both kernel-level and
user-level events, or DLL injection to intercept file I/O operations
(with the same drawbacks as system call interposition mentioned
in 4.2). On MacOS, the simplest would be to use DTrace. It is similar
to Linux’s bpftrace, a dynamic tracing framework for both user-
level and kernel-level operations. It requires disabling the System
Integrity Protection, a security feature restricting the root user and
system processes from modifying protected parts of the system but
it is not justifiable for end users to compromise malware protection
to use r4r. An alternative approach is either to use dynamic library
interception via DYLD_INSERT_LIBRARIES (again, with the same prob-
lems, cf. 4.2) or the Endpoint Security Framework,!” a C API for
monitoring system events.

Support for other back-ends. We have chosen Docker for the
back-end, but there are other options. The use of a manifest as

Shttps://learn.microsoft.com/en-us/windows/wsl/about
18https://learn.microsoft.com/en-us/windows/win32/etw/about-event-tracing
7https://developer.apple.com/documentation/endpointsecurity

ACM REP ’25, July 29-31, 2025, Vancouver, BC, Canada

intermediate representation makes it flexible for adding alterna-
tive back-ends. For example, instead of turning the manifest into
a Dockerfile, we could generate a Vagrantfile!® and create a com-
plete virtual machine.

Security. Sensitive files such as SSH keys, secrets, or command
line history files are copied into the Docker image if detected when
tracing. The user can still edit them out of the manifest but we
could show a warning if they are present, or even show them as
not being copied in the manifest.

Shortcomings. Package file resolvers—such as those for Ubuntu
and R—elevate the level of abstraction in environment specification
by resolving dependencies based on package names and versions.
However, this approach introduces a reliance on external services.
For instance, an Ubuntu package may receive a security update
that renders the previously specified version unavailable, or an R
package might be removed from CRAN entirely. There are two
primary strategies to address this limitation: (1) manually modify
the manifest to relax version constraints (e.g., specifying 1.2.* to
allow updates within the 1.2 series), or (2) avoid using resolvers
altogether by directly copying the necessary package files into the
environment.

5 Evaluation

To check whether r4r correctly builds reproducible artifacts, we
need to compare the outputs of several runs of the same program.
Figure 4 shows the conceptual overview of how the evaluation
works:

(1) For a given program, we first run it on the host machine
where we expect it to be executed and produce a result
(output 1).

(2) Next, we run it again on the host machine, expecting it to
produce the same result as in the first run. If the output
2 does not match output 1 then it means that there are
sources of non-determinism in the program execution that
we cannot control. Note that if the 2 outputs do match, there
could still be sources of non-determinism that could manifest
for other runs.

(3) The third invocation executes the program with the r4r tool
that tracks the program dependencies. The result of this run
(output 3) should be the same as output 2, i.e. r4r should
not alter the program behavior in any way. If it is not, it
means that r4r impacted the run.

(4) Finally, we run the program in the guest environment, i.e.
the environment created by the tool. If the output 4 is dif-
ferent from output 3 then the tool created an environment
that does not account for all sources of non-determinism.
Otherwise, the tool succeeded and we have a reproducible
environment.

Bhttps://www.vagrantup.com/

https://learn.microsoft.com/en-us/windows/wsl/about
https://learn.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://developer.apple.com/documentation/endpointsecurity
https://www.vagrantup.com/

ACM REP ’25, July 29-31, 2025, Vancouver, BC, Canada

__] Hostenvironment | ___________________ ...

run 1: | ./program <args> |—>| output 1 B‘

E run 2: | ./program <args> |—P| output 2 B‘ 1

E run 3: | r4r ./program <args> I—)| output 3 B' i
creates

) S SO——

I orun4: | ./program <args> l—)| output 4 B‘

Figure 4: Overview of the r4r evaluation.

5.1 Experimental setup

The Kaggle dataset. Kaggle'® is a competitive data science plat-
form. Users can participate to competition or just host their note-
books there and use the compute offered by the platform. Kaggle
allows users to use Python, R or Julia.

Using the Kaggle public APIL, we retrieve 1100 R Markdown
notebooks and keep the ones that use datasets with open source
licenses,?’ and which are not linked to competitions, as competi-
tions required manual acceptance of the rules on the website. After
that filtering step, we are left with 523 notebooks.

We randomly sample 120 notebooks among those notebooks for
further experiments. All of them render to self-contained HTML
documents,?! where images are base64-encoded and set in the src
attribute of tags.

Running the notebooks. Notebooks on Kaggle expect a particular
folder hierarchy: the notebook itself is located in /kaggle/code/,
while the inputs are in /kaggle/input/. Kaggle also provides a di-
rectory to store persistent data between runs in /kaggle/working/.
Besides, the notebooks we collected do not come with their R and
system dependencies. To approximate those, we used a custom tool
to parse the 120 R Markdown files to get package loading state-
ments (library(package)), yielding 118 packages from CRAN and
GitHub, and then pak: : pkg_sysreqgs to get the system dependen-
cies.?? We build a Docker image based on Ubuntu 24.04 with the
correct folder structure and dependencies for the 120 notebooks.

Hardware. We run the experiments on an Ubuntu 24.04 server,
with 189 GB of RAM and 72 cores.

Experiment pipeline. Figure 5 shows the successive steps of the
experiment pipeline, with the durations of the non-negligible steps.
After sampling the notebooks, we run them twice, with a 15-minute
timeout, filter out the ones that do not complete execution, and
then compare their outputs. The ones which do not have the same

Yhttps://www.kaggle.com/

200n Kaggle, notebooks themselves are licensed under the Apache 2 license.
2Kaggle makes it nearly impossible to output anything else than html.

22pak is a R package manager. It can look for system dependencies in an online database
at https://github.com/rstudio/r-system-requirements

Pierre Donat-Bouillud et al.

Steps #notebooks Duration
Initial dataset 1100
Filter out non-
opensource and 577
competition datasets
’ Sample notebooks ‘ 120
l Run the notebooks twice.‘ 100
17 mins
Compare the outputs 79
and keep the equal ones
Run the notebook 79 20 mi
with r4r with tracing mmns
Build the generated
Docker image and 79
run the notebook
3.1 hours
Compare the outputs 77

Figure 5: Experiment pipeline. Numbers on the right indicate
how many notebooks are left after each step. After a run step,
we remove notebooks that failed to execute to the end and
produce an output.

outputs are non-deterministic. The remaining ones are said to be
deterministic, at least observably on those runs. We only keep the
deterministic ones to be traced with r4r and then we generate the
Docker image with make and run the notebook a third time in that
Docker image. We then compare the output of the execution of the
notebook in the Docker image with the output of the non-traced
notebook. The running and tracing steps, and the steps to generate
the Docker image and run the notebook in it, are performed in
parallel with parallel [37] using 25 cores.

Artifact. We make an artifact available with the data and the
scripts to rerun the pipeline along with the submission.

5.2 Running and tracing errors.

Just running the 120 notebooks without r4r results in 20 erroring
notebooks, including 2 timing-out notebooks. For 8 notebooks,

https://www.kaggle.com/
https://github.com/rstudio/r-system-requirements

R4R: Reproducibility for R

errors are due to missing input files, because they refer to datasets
that were removed from Kaggle or whose paths were updated after
the notebook creation. The remaining 10 notebooks have errors due
to deprecated libraries (for instance, the scales library), duplicate
chunk labels, or even unbalanced chunk fences. r4r does not add
more errors: notebooks which successfully run without r4r do not
fail when traced with r4r.

5.3 Reproducibility

Exact reproducibility. We compare the HTML outputs of the note-
books line by line, with the diff utility [22] in unified diff mode. If
there are no differences, we say the notebooks are exactly repro-
ducible. 97.5% of the artifacts r4r creates from the deterministic
notebooks successfully reproduce, which represent 79% of the note-
books that successfully completed execution. 2 notebooks do not
have the same outputs as the non-r4r-package version: one explic-
itly triggers the garbage collector at the beginning of the notebook
after removing all bindings, which prints the used and cleaned
memory of R, and that differs by a few MB across runs. Removing
the call to gc () makes it reproducible. The other one fits a statistical
model which triggers errors and does not show the errors exactly
the same way.

Approximate reproducibility. To get a better understanding of the
differences in notebooks with different outputs, including both non-
deterministic notebooks and the 2 ones that fail to reproduce with
r4r, we process the differences we get from diff to detect cases
involving dates, images, or numbers. Images with differences come
from plotting instructions. Manual visual inspections suggested
that images are actually very similar, or that the numbers are close.

e Images. We compute the structural similarity [44] (SSIM)
between the 2 images: 1 means that the images are the same,
and —1 that they are totally different. Across all the note-
books, there are 34 changes involving images. None of them
has a SSIM lower than 0.99, suggesting that the differences
are not visually perceptible.

e Numbers. We detect when changes only touch numbers
and then compare the numbers. Only 4 have such changes.
Two notebooks perform a parallel model estimation which
prints progress numbers. The interleaving of the progress
messages is not the same on the outputs. One notebook
performs sampling and exhibits only one difference, in which
numbers only differ by less than 0.1. The last notebook is the
one that performs explicit garbage collection and has only
one number differing by more than 0.1.

e Dates. We use a regular expression to detect changes with
only dates. The differences only appear if we run the various
steps of the pipeline across at least 2 days.

e Other. We compute the Levenshtein distance on characters
between the 2 versions using the R package stringdist [41].
The mean distance is 222.6 and the median 93, suggesting
that each of the changes is large. Only 6 notebooks have
such changes. It includes the notebook that triggers errors
not shown the same way.

Overall, the notebooks that were not deterministic have little
differences in their output, with 73.7% of the non-reproducible ones
with fewer than 10 differences. Most changes touch only a small

ACM REP ’25, July 29-31, 2025, Vancouver, BC, Canada

part of the output: differences between the outputs are more than
1% for only 3 notebooks, as shown on Figure 6.

12 -

10-

Number of notebooks

N i i

0 4 8 12 16 20 24 28
Differing lines (%)

Figure 6: Percent of number of lines changed (n{, n;) over
the number of lines (n;, n;) of the outputs, more formally,

2max(n¢,nS
M X 100
ni+ny

For numeric changes, we say that two outputs are approximately
reproducible if given the same inputs, their differences are no larger
than some user-provided threshold. Indeed, the 0.1 threshold for
numeric changes is arbitrary but gives an intuition. Overall, with
the reproducible deterministic notebooks, the 10 notebooks with
only changes in images, and taking into account the one notebook
with numeric changes less than 0.1, at least 89% of the notebooks
are approximately reproducible.

5.4 Complexity of reproducibility artifacts

To estimate how much effort creating the Docker image would
have been if done manually, in Table 1, we show the number of deb
packages, R packages from CRAN and from GitHub, and files to
copy that we need to specify to get a reproducible environment with
the exact same package versions. This means that all dependencies
must be explicitly specified with their version.

Even the minimum of Ubuntu packages, 59, or CRAN packages,
26, is already quite high. For each CRAN package, a user manually
creating the Dockerfile would have to check which system depen-
dencies it requires and add them to the Dockerfile. The files to copy
include the notebook itself, all the data inputs it needs, but also
system files that could not be resolved to Deb or R packages.

5.5 Performance and size

r4r makes running a notebook 4.7 times slower, on average, on
the successfully traced notebooks. More than half of the notebooks

ACM REP ’25, July 29-31, 2025, Vancouver, BC, Canada

mean median min max

files 30.8 24 20 178

deb 1011 90 59 151
cran 2271 113 26 49
github 1 0 0 4

Table 1: Mean, median, min, and max of files to copy (files),
deb packages (deb), CRAN packages (cran), GithHub packages
(github) per package, among those that do not error when
generating the Dockerfile.

even have a smaller slowdown, as the median slowdown is 3.2 x.
Part of the slowdown is due to r4r resolving packages and creating
an archive of the input files. The bigger the input data, the slower it
is. Another part is the overhead due to ptrace: tracing a notebook
execution is only 1.4 slower than just running it. The maximum
slowdown is 26 but the tracing slowdown for this notebook is 1.91;
the notebook uses 12 large datasets that have to be added into the
archive.

Building the generated images can take a lot of time, on average,
32.3 mins per notebook. Most of that time is spent building the
required R packages, which we already decreased by parallelizing
the installation of R packages (see Section 4.5). The longest image
build time is 75.6 mins.

The uncompressed Docker images are rather minimal: the mean
size is 2.57 GB and the median size, 1.64 GB. The largest one is
6.06 GB. As a comparison, the Docker image used by Kaggle?,
which provides a general-purpose R image with RStudio, all CRAN
packages, and some more utilities, is 38 GB uncompressed.

5.6 Limitations

The filtering step to remove non-deterministic notebooks assumes
that if a notebook is non-deterministic, then it will have a different
output at each run. This might not be always the case. In practice,
we detected the same non-deterministic notebooks when running
the experiment pipeline several times. It suggests that the other
notebooks have sources of non-determinism that do not depend on
the dependencies but rather at the hardware layer (as discussed in
Section 3.1). This is the case for the notebook that explicitly calls
the garbage collector (cf Section 5.3).

For the evaluation, we use a dataset of notebooks from Kaggle
and exclude the non-competition and non-open source ones. Al-
though that dataset might not be representative of R Markdown
notebooks in general, they use a large number of diverse packages
and of system dependencies, which was already enough to discover
bugs hindering reproducibility during the development of r4r. The
R packages used in the dataset, such as dplyr [47] or tidymodels
[21] from the tidyverse set of packages, are packages commonly
used in R.

Bgcrio/kaggle-gpu-images/rstats:latest

Pierre Donat-Bouillud et al.

6 Conclusion

Reproducibility is a cornerstone of scientific progress. However,
recreating the execution environment necessary to reproduce com-
putational experiments remains a significant challenge, particu-
larly for researchers lacking expertise in system administration. To
address this issue, we developed r4r, a tool that automates envi-
ronment reconstruction. r4r employs dynamic program analysis
to trace all runtime dependencies and assembles a self-contained,
user-inspectable, environment in which the program can execute
without external interference. Currently, rdr targets Ubuntu-based
Linux distributions and produces Docker images as the reproducible
environment. While it provides first-class support for the R pro-
gramming language, it also includes a language-agnostic fallback
mechanism based on file system tracing, enabling broader appli-
cability. In an evaluation on a dataset of R Markdown notebooks
from Kaggle, r4r successfully reproduced 97.5% of deterministic
notebooks.

Future work. The r4r tool is designed with extensibility in mind.
We plan to expand the front-end to support additional Linux dis-
tributions, and additional operating systems beyond Linux. In the
middle-end, our next goal is to introduce first-class support for the
Python programming language. On the back-end, in addition to
generating Docker images, we aim to support Vagrant to enable
the creation of full virtual machines, which would be particularly
useful for long-term archival of computational environments.

Another direction involves improving the tracing mechanism
on Linux. Specifically, we plan to replace ptrace with eBPF, which
now supports reading arbitrary string arguments from system calls.
This change is expected to significantly reduce tracing overhead,
especially for data analysis workflows with intensive I/O.

Finally, we aim to improve the overall user experience. Currently,
r4r is a command-line tool, which may pose a barrier for users
unfamiliar with terminal-based workflows. To make the tool more
accessible, we plan to develop a plugin for RStudio Desktop,*
a widely used integrated development environment among data
scientists.

Acknowledgments

We thank Petr Adamek for developing a first prototype of r4r. We
thank the reviewers for their valuable feedback and suggestions
that helped improve the paper. The research was supported by
Czech Science Foundation Grant No. 23-07580X.

References

[1] ACM. 2020. Artifact Review and Badging - Current. https://www.acm.org/
publications/policies/artifact-review-and-badging-current accessed 2025-01-14.

] Continuum Analytics. 2012. Conda project. https://docs.conda.io/en/latest/

] Astral. 2025. uv project. https://docs.astral.sh/uv/

] M Baker. 2016. 1,500 scientists lift. Nature 533 (2016), 452-454.

] Emery D Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, and Jan Vitek. 2019.
On the impact of programming languages on code quality: A reproduction study.
ACM Transactions on Programming Languages and Systems (TOPLAS) 41, 4 (2019),
1-24.

[6] Carl Boettiger and Dirk Eddelbuettel. 2017. An Introduction to Rocker: Docker

Containers for R. The R Journal 9, 2 (2017), 527-536. doi:10.32614/R]J-2017-065

Fernando Chirigati, Rémi Rampin, Dennis Shasha, and Juliana Freire. 2016. Re-

proZip: Computational Reproducibility With Ease. In Proceedings of the 2016

7

Z4https://posit.co/download/rstudio-desktop/

gcr.io/kaggle-gpu-images/rstats:latest
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://docs.conda.io/en/latest/
https://docs.astral.sh/uv/
https://doi.org/10.32614/RJ-2017-065
https://posit.co/download/rstudio-desktop/

=

[

: Reproducibility for R

International Conference on Management of Data (San Francisco, California, USA)
(SIGMOD ’16). ACM, 2085-2088. doi:10.1145/2882903.2899401

Andrie de Vries. 2024. miniCRAN: Create a Mini Version of CRAN Containing
Only Selected Packages. https://github.com/andrie/miniCRAN R package version
0.3.0.9000.

Colin Fay, Vincent Guyader, Josiah Parry, and Sébastien Rochette. 2022. dock-
erfiler: Easy Dockerfile Creation from R. https://github.com/ThinkR-open/
dockerfiler R package version 0.1.5.0002.

Gabriel Fils, Zhihao Yuan, Tanu Malik, et al. 2017. Sciunits: Reusable research
objects. In 2017 IEEE 13th International Conference on e-Science (e-Science). IEEE,
374-383.

Tal Garfinkel. 2003. Traps and pitfalls: Practical problems in system call interpo-
sition based security tools. In In Proc. Network and Distributed Systems Security
Symposium.

Federico M Giorgi, Carmine Ceraolo, and Daniele Mercatelli. 2022. The R lan-
guage: an engine for bioinformatics and data science. Life 12, 5 (2022), 648.
Steven N Goodman, Daniele Fanelli, and John PA Ioannidis. 2016. What does
research reproducibility mean? Science translational medicine 8, 341 (2016),
341ps12-341ps12.

[14] John Gruber. 2004. Markdown. https://daringfireball.net/projects/markdown/.

Accessed: 2025-04-02.

Philip J Guo and Dawson Engler. 2011. {CDE}: Using system call interposition
to automatically create portable software packages. In 2011 USENIX Annual
Technical Conference (USENIX ATC 11).

Chung hong Chan and David Schoch. 2023. rang: Reconstructing reproducible
R computational environments. PLOS ONE (2023). doi:10.1371/journal.pone.
0286761

Richard Jones. 2003. The Python Package Index. https://pypi.org/

Jupyter. 2025. uv project. https://mybinder.readthedocs.io

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason
Grout, Sylvain Corlay, Paul Ivanov, Damian Avila, Safia Abdalla, and Carol
Willing. 2016. Jupyter Notebooks—a publishing format for reproducible com-
putational workflows. In Positioning and Power in Academic Publishing: Players,

(39]

[40

[41]

=
L)

[43

ACM REP ’25, July 29-31, 2025, Vancouver, BC, Canada

O’Reilly Media, Inc..

Ole Tange. 2023. GNU Parallel 2023. Ole Tange. doi:10.5281/zenodo.10199085
Ana Trisovic, Matthew K Lau, Thomas Pasquier, and Mercé Crosas. 2022. A
large-scale study on research code quality and execution. Scientific Data 9, 1
(2022), 60.

Dana Udwin and Ben Baumer. 2015. R Markdown. Wiley Interdisciplinary Reviews:
Computational Statistics 7 (01 2015). doi:10.1002/wics.1348

Kevin Ushey and Hadley Wickham. 2024. renv: Project Environments. https://
rstudio.github.io/renv/ R package version 1.0.11, https://github.com/rstudio/renv.
Mark P.J. van der Loo. 2014. The stringdist Package for Approximate String
Matching. The R Journal 6, 1 (2014), 111-122. doi:10.32614/RJ-2014-011

Gael Vila, Emmanuel Medernach, Ines Gonzalez Pepe, Axel Bonnet, Yohan Chate-
lain, Michael Sdika, Tristan Glatard, and Sorina Camarasu Pop. 2024. The Impact
of Hardware Variability on Applications Packaged with Docker and Guix: a Case
Study in Neuroimaging. In Proceedings of the 2nd ACM Conference on Reproducibil-
ity and Replicability (Rennes, France) (ACM REP °24). Association for Computing
Machinery, New York, NY, USA, 75-84. do0i:10.1145/3641525.3663626

Jiawei Wang, Tzu-yang Kuo, Li Li, and Andreas Zeller. 2020. Restoring repro-
ducibility of Jupyter notebooks. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Companion Proceedings (Seoul, South Korea)
(ICSE °20). Association for Computing Machinery, New York, NY, USA, 288-289.
doi:10.1145/3377812.3390803

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image
quality assessment: from error visibility to structural similarity. IEEE transactions
on image processing 13, 4 (2004), 600-612.

Robert N. M. Watson. 2007. Exploiting Concurrency Vulnerabilities
in System Call Wrappers. In Proceedings of the First USENIX Work-
shop on Offensive Technologies (WOOT07). USENIX Association, Boston,
MA. https://www.usenix.org/conference/woot-07/exploiting- concurrency-
vulnerabilities- system- call-wrappers

Hadley Wickham and Jennifer Bryan. 2023. R packages. " O’Reilly Media, Inc.".
Hadley Wickham, Romain Frangois, Lionel Henry, Kirill Miiller, and Davis
Vaughan. 2023. dplyr: A Grammar of Data Manipulation. https://dplyr.tidyverse.
org R package version 1.1.4, https://github.com/tidyverse/dplyr.

Agents and Agendas. 10S Press, 87-90. doi:10.3233/978-1-61499-649-1-87

[20] Donald E. Knuth. 1984. Literate Programming. Comput. J. 27, 2 (1984), 97-111.
doi:10.1093/comjnl/27.2.97

[21] Max Kuhn and Hadley Wickham. 2020. Tidymodels: a collection of packages
for modeling and machine learning using tidyverse principles. https://www.
tidymodels.org

[22] David MacKenzie, Paul Eggert, and Richard Stallman. 2002. Comparing and

Merging Files with GNU diff and patch. Network Theory Ltd 4 (2002), 23-25.

Eliot] B McIntire. 2024. Require: Installing and Loading R Packages for Repro-

ducible Workflows. https://Require.predictiveecology.org R package version 1.0.1,

https://github.com/PredictiveEcology/Require.

[24] V.P.Nagraj and Stephen D. Turner. 2023. pracpac: Practical R Packaging with
Docker. arXiv:2303.07876 [q-bio.QM] https://arxiv.org/abs/2303.07876

[25] Daniel Niist, Dirk Eddelbuettel, Dom Bennett, Robrecht Cannoodt, Dav Clark,
Gergely Dardczi, Mark Edmondson, Colin Fay, Ellis Hughes, Lars Kjeldgaard,
Sean Lopp, Ben Marwick, Heather Nolis, Jacqueline Nolis, Hong Ooi, Karthik
Ram, Noam Ross, Lori Shepherd, Péter Solymos, Tyson Lee Swetnam, Nitesh
Turaga, Charlotte Van Petegem, Jason Williams, Craig Willis, and Nan Xiao. 2020.
The Rockerverse: Packages and Applications for Containerisation with R. The R
Journal 12, 1 (2020), 437-461. doi:10.32614/RJ-2020-007

[26] Daniel Niist and Matthias Hinz. 2019. containerit: Generating Dockerfiles for

reproducible research with R . Journal of Open Source Software 4, 40 (8 2019),

1603. doi:10.21105/j0ss.01603

National Academies of Sciences, Medicine, Policy, Global Affairs, Board on Re-

search Data, Information, Division on Engineering, Physical Sciences, Committee

on Applied, Theoretical Statistics, et al. 2019. Reproducibility and replicability in

science. National Academies Press.

[28] Quan Pham, Tanu Malik, and Ian Foster. 2013. Using provenance for repeatability.
In 5th USENIX Workshop on the Theory and Practice of Provenance (TaPP 13).

[29] Joao Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2019. A large-scale study about quality and reproducibility of jupyter notebooks.
In 2019 IEEE/ACM 16th international conference on mining software repositories
(MSR). IEEE, 507-517.

[30] The pip developers. 2008. pip project. https://pypi.org/project/pip/

[31] PyPA. 2007. virtualenv project. https://virtualenv.pypa.io/en/latest/

[32] Bruno Rodrigues and Philipp Baumann. 2025. rix: Reproducible Data Science
Environments with °Nix’. https://docs.ropensci.org/rix/ R package version 0.14.3.

[33] Vinay Sajip. 2012. venv project. https://docs.python.org/3/library/venv.html

[34] Sheeba Samuel and Daniel Mietchen. 2024. Computational reproducibility of
Jupyter notebooks from biomedical publications. GigaScience 13 (2024), giad113.

[35] Uri Simonsohn and Hugo Gruson. 2024. groundhog: Version-Control for CRAN,
GitHub, and GitLab Packages. https://groundhogr.com R package version 3.2.1.

[36] Gavin D. Stark and Brendan Gregg. 2019. BPF Performance Tools: Linux System
and Application Observability. In USENIX Annual Technical Conference. USENIX.

[23

[27

https://doi.org/10.1145/2882903.2899401
https://github.com/andrie/miniCRAN
https://github.com/ThinkR-open/dockerfiler
https://github.com/ThinkR-open/dockerfiler
https://daringfireball.net/projects/markdown/
https://doi.org/10.1371/journal.pone.0286761
https://doi.org/10.1371/journal.pone.0286761
https://pypi.org/
https://mybinder.readthedocs.io
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1093/comjnl/27.2.97
https://www.tidymodels.org
https://www.tidymodels.org
https://Require.predictiveecology.org
https://arxiv.org/abs/2303.07876
https://arxiv.org/abs/2303.07876
https://doi.org/10.32614/RJ-2020-007
https://doi.org/10.21105/joss.01603
https://pypi.org/project/pip/
https://virtualenv.pypa.io/en/latest/
https://docs.ropensci.org/rix/
https://docs.python.org/3/library/venv.html
https://groundhogr.com
https://doi.org/10.5281/zenodo.10199085
https://doi.org/10.1002/wics.1348
https://rstudio.github.io/renv/
https://rstudio.github.io/renv/
https://doi.org/10.32614/RJ-2014-011
https://doi.org/10.1145/3641525.3663626
https://doi.org/10.1145/3377812.3390803
https://www.usenix.org/conference/woot-07/exploiting-concurrency-vulnerabilities-system-call-wrappers
https://www.usenix.org/conference/woot-07/exploiting-concurrency-vulnerabilities-system-call-wrappers
https://dplyr.tidyverse.org
https://dplyr.tidyverse.org

	Abstract
	1 Introduction
	2 Background
	2.1 The R language
	2.2 Computational notebooks
	2.3 Related work

	3 Requirements of the r4r tool
	3.1 Sources of non-determinism
	3.2 Dependency tracing
	3.3 Reproducible environment

	4 Design and implementation
	4.1 Trace files
	4.2 Resolve files
	4.3 Resolve system dependencies
	4.4 Edit manifest
	4.5 Create Dockerfile
	4.6 Build Docker image and rerun
	4.7 Discussion

	5 Evaluation
	5.1 Experimental setup
	5.2 Running and tracing errors.
	5.3 Reproducibility
	5.4 Complexity of reproducibility artifacts
	5.5 Performance and size
	5.6 Limitations

	6 Conclusion
	Acknowledgments
	References

